Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 37(6): 103, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34013421

RESUMO

Microbiocides are used to control problematic microorganisms. High doses of microbiocides cause environmental and operational problems. Therefore, using microbiocide enhancers to make microbiocides more efficacious is highly desirable. 2,2-dibromo-3-nitrilopropionamide (DBNPA) is a popular biodegradable microbiocide. D-Amino acids have been used in lab tests to enhance microbiocides to treat microbial biofilms. In this investigation, D-tyrosine was used to enhance DBNPA against Desulfovibrio vulgaris biofilm on C1018 carbon steel. After 7 days of incubation, the mass loss of coupons without treatment chemicals in the ATCC 1249 culture medium was found to be 3.1 ± 0.1 mg/cm2. With 150 ppm (w/w) DBNPA in the culture medium, the mass loss was reduced to 1.9 ± 0.1 mg/cm2 accompanied by a 1-log reduction in the sessile cell count. The 150 ppm DBNPA + 1 ppm D-tyrosine combination attained an extra 3-log reduction in sessile cell count and an additional 30% reduction in mass loss compared with 150 ppm DBNPA only treatment. The combination also led to a smaller maximum pit depth. Linear polarization resistance (LPR), electrochemical impedance spectrometry (EIS), and potentiodynamic polarization (PDP) tests corroborated the enhancement effects.


Assuntos
Biofilmes/efeitos dos fármacos , Carbono/química , Desulfovibrio vulgaris/fisiologia , Nitrilas/farmacologia , Tirosina/química , Corrosão , Meios de Cultura/química , Desulfovibrio vulgaris/efeitos dos fármacos , Espectroscopia Dielétrica , Testes de Sensibilidade Microbiana , Nitrilas/química , Oxirredução , Aço/química , Sulfatos/metabolismo
2.
Anaerobe ; 65: 102264, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32860932

RESUMO

Desulfovibrio spp. are gram negative, obligate anaerobes capable of reducing sulfate. They have caused infections in humans, but very rarely. They are slow growers and difficult to identify. Hence, they are often overlooked and their actual presence goes unnoticed. Here, we describe a case of a 15- year old boy who was involved in a road traffic accident and he presented with seropurulent discharge from a depressed fracture wound on the forehead. Desulfovibrio vulgaris (D.vulgaris), was isolated from the pus discharge, the first to be reported. The characteristic desulfoviridin pigment production in the organism aided in the identification. The infection was successfully managed with pain reliever and course of amoxicillin - clavulanic acid and linezolid.


Assuntos
Desulfovibrio vulgaris/isolamento & purificação , Infecções por Desulfovibrionaceae/diagnóstico , Infecções por Desulfovibrionaceae/microbiologia , Testa/lesões , Fratura do Crânio com Afundamento/complicações , Infecção dos Ferimentos/diagnóstico , Infecção dos Ferimentos/microbiologia , Adolescente , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Desulfovibrio vulgaris/classificação , Desulfovibrio vulgaris/efeitos dos fármacos , Infecções por Desulfovibrionaceae/tratamento farmacológico , Humanos , Masculino , Fenótipo , Infecção dos Ferimentos/tratamento farmacológico
4.
Environ Int ; 125: 65-74, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30710801

RESUMO

The widespread use of CuO nanoparticles (NPs) results in their continuous release into the environment, which could pose risks to public health and to microbial ecosystems. Following consumption, NPs will initially enter into sewer systems and interact with and potentially influence sewer microbial communities. An understanding of the response of microbes in sewers, particularly sulfate-reducing bacteria (SRB), to the CuO NPs induced stress is important as hydrogen sulfide produced by SRB can cause sewer corrosion and odour emissions. In this study, we elucidated how the anabolic and catabolic processes of a model SRB, Desulfovibrio vulgaris Hidenborough (D. vulgaris), respond to CuO NPs. Physiological analyses indicated that the exposure of the culture to CuO NPs at elevated concentrations (>50 mg/L) inhibited both its anabolic and catabolic activities, as revealed by lowered cell proliferation and sulfate reduction rate. The antibacterial effects of CuO NPs were mainly attributed to the overproduction of reactive oxygen species. Transcriptomic analysis indicated that genes encoding for flagellar assembly and some genes involved in electron transfer and respiration were down-regulated, while genes for the ferric uptake regulator (Fur) were up-regulated. Moreover, the CuO NPs exposure significantly up-regulated genes involved in protein synthesis and ATP synthesis. These results suggest that CuO NPs inhibited energy conversion, cell mobility, and iron starvation to D. vulgaris. Meanwhile, D. vulgaris attempted to respond to the stress of CuO NPs by increasing protein and ATP synthesis. These findings offer new insights into the bacterial-nanoparticles interaction at the transcriptional level, and advance our understanding of impacts of CuO NPs on SRB in the environment.


Assuntos
Cobre/toxicidade , Desulfovibrio vulgaris/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/metabolismo , Oxirredução , Sulfatos/metabolismo , Transcriptoma/efeitos dos fármacos
5.
Biotechnol Bioeng ; 115(6): 1465-1474, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476629

RESUMO

In situ bioreduction of soluble hexavalent uranium U(VI) to insoluble U(IV) (as UO2 ) has been proposed as a means of preventing U migration in the groundwater. This work focuses on the bioreduction of U(VI) and precipitation of U(IV). It uses anaerobic batch reactors with Desulfovibrio vulgaris, a well-known sulfate, iron, and U(VI) reducer, growing on lactate as the electron donor, in the absence of sulfate, and with a 30-mM bicarbonate buffering. In the absence of sulfate, D. vulgaris reduced >90% of the total soluble U(VI) (1 mM) to form U(IV) solids that were characterized by X-ray diffraction and confirmed to be nano-crystalline uraninite with crystallite size 2.8 ± 0.2 nm. pH values between 6 and 10 had minimal impact on bacterial growth and end-product distribution, supporting that the mono-nuclear, and poly-nuclear forms of U(VI) were equally bioavailable as electron acceptors. Electron balances support that H2 transiently accumulated, but was ultimately oxidized via U(VI) respiration. Thus, D. vulgaris utilized H2 as the electron carrier to drive respiration of U(VI). Rapid lactate utilization and biomass growth occurred only when U(VI) respiration began to draw down the sink of H2 and relieve thermodynamic inhibition of fermentation.


Assuntos
Desulfovibrio vulgaris/crescimento & desenvolvimento , Desulfovibrio vulgaris/metabolismo , Hidrogênio/metabolismo , Urânio/metabolismo , Reatores Biológicos/microbiologia , Biotransformação , Meios de Cultura/química , Desulfovibrio vulgaris/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Lactatos/metabolismo , Oxirredução
6.
Appl Microbiol Biotechnol ; 102(6): 2839-2850, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29429007

RESUMO

Desulfovibrio spp. are capable of heavy metal reduction and are well-studied systems for understanding metal fate and transport in anaerobic environments. Desulfovibrio vulgaris Hildenborough was grown under environmentally relevant conditions (i.e., temperature, nutrient limitation) to elucidate the impacts on Cr(VI) reduction on cellular physiology. Growth at 20 °C was slower than 30 °C and the presence of 50 µM Cr(VI) caused extended lag times for all conditions, but once growth resumed the growth rate was similar to that without Cr(VI). Cr(VI) reduction rates were greatly diminished at 20 °C for both 50 and 100 µM Cr(VI), particularly for the electron acceptor limited (EAL) condition in which Cr(VI) reduction was much slower, the growth lag much longer (200 h), and viability decreased compared to balanced (BAL) and electron donor limited (EDL) conditions. When sulfate levels were increased in the presence of Cr(VI), cellular responses improved via a shorter lag time to growth. Similar results were observed between the different resource (donor/acceptor) ratio conditions when the sulfate levels were normalized (10 mM), and these results indicated that resource ratio (donor/acceptor) impacted D. vulgaris response to Cr(VI) and not merely sulfate limitation. The results suggest that temperature and resource ratios greatly impacted the extent of Cr(VI) toxicity, Cr(VI) reduction, and the subsequent cellular health via Cr(VI) influx and overall metabolic rate. The results also emphasized the need to perform experiments at lower temperatures with nutrient limitation to make accurate predictions of heavy metal reduction rates as well as physiological states in the environment.


Assuntos
Carcinógenos Ambientais/metabolismo , Carcinógenos Ambientais/toxicidade , Cromo/metabolismo , Cromo/toxicidade , Desulfovibrio vulgaris/efeitos dos fármacos , Desulfovibrio vulgaris/metabolismo , Anaerobiose , Desulfovibrio vulgaris/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos , Oxirredução , Sulfatos/metabolismo , Temperatura
7.
Water Res ; 129: 163-171, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149671

RESUMO

The intensive use of silver nanoparticles (AgNPs) in cosmetics and textiles causes their release into sewer networks of urban water systems. Although a few studies have investigated antimicrobial activities of nanoparticles against environmental bacteria, little is known about potential impacts of the released AgNPs on sulfate reducing bacteria in sewers. Here, we investigated the effect of AgNPs on Desulfovibrio vulgaris Hidenborough (D. vulgaris), a typical sulfate-reducing bacterium (SRB) in sewer systems. We found AgNPs stimulated the proliferation of D. vulgaris, rather than exerting inhibitory or biocidal effects. Based on flow cytometer detections, both the cell growth rate and the viable cell ratio of D. vulgaris increased during exposure to AgNPs at concentrations of up to 100 mg/L. The growth stimulation was dependent on the AgNP concentration. These results imply that the presence of AgNPs in sewage may affect SRB abundance in sewer networks. Our findings also shed new lights on the interactions of nanoparticles and bacteria.


Assuntos
Desulfovibrio vulgaris/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/farmacologia , Bactérias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desulfovibrio vulgaris/crescimento & desenvolvimento , Desulfovibrio vulgaris/metabolismo , Lactatos/metabolismo , Esgotos/microbiologia , Sulfatos/metabolismo
8.
Environ Microbiol Rep ; 9(6): 779-787, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28925553

RESUMO

Biofilms of sulfate-reducing bacteria (SRB) are often the major cause of microbiologically influenced corrosion. The representative SRB Desulfovibrio vulgaris has previously been shown to have a biofilm that consists primarily of protein. In this study, by utilizing lectin staining, we identified that the biofilm of D. vulgaris also consists of the matrix components mannose, fucose and N-acetylgalactosamine (GalNAc), with mannose predominating. Based on these results, we found that the addition of mannose and the nonmetabolizable mannose analog 2-deoxy-d-glucose inhibits the biofilm formation of D. vulgaris as well as that of D. desulfuricans; both compounds also dispersed the SRB biofilms. In addition, the enzyme N-acetylgalactosaminidase, which degrades GalNAc, was effective in dispersing D. vulgaris biofilms. Therefore, by determining composition of the SRB biofilm, effective biofilm control methods may be devised.


Assuntos
Acetilglucosaminidase/farmacologia , Biofilmes/efeitos dos fármacos , Desoxiglucose/farmacologia , Desulfovibrio vulgaris/efeitos dos fármacos , Manose/farmacologia , Acetilgalactosamina/metabolismo , Antimetabólitos/farmacologia , Desulfovibrio desulfuricans/efeitos dos fármacos , Desulfovibrio desulfuricans/fisiologia , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/fisiologia , Manose/análogos & derivados , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Coloração e Rotulagem
9.
Appl Environ Microbiol ; 82(18): 5563-75, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27371588

RESUMO

Hydrogen sulfide produced by sulfate-reducing bacteria (SRB) in sewers causes odor problems and asset deterioration due to the sulfide-induced concrete corrosion. Free nitrous acid (FNA) was recently demonstrated as a promising antimicrobial agent to alleviate hydrogen sulfide production in sewers. However, details of the antimicrobial mechanisms of FNA are largely unknown. Here, we report the multiple-targeted antimicrobial effects of FNA on the SRB Desulfovibrio vulgaris Hildenborough by determining the growth, physiological, and gene expression responses to FNA exposure. The activities of growth, respiration, and ATP generation were inhibited when exposed to FNA. These changes were reflected in the transcript levels detected during exposure. The removal of FNA was evident by nitrite reduction that likely involved nitrite reductase and the poorly characterized hybrid cluster protein, and the genes coding for these proteins were highly expressed. During FNA exposure, lowered ribosome activity and protein production were detected. Additionally, conditions within the cells were more oxidizing, and there was evidence of oxidative stress. Based on an interpretation of the measured responses, we present a model depicting the antimicrobial effects of FNA on D. vulgaris These findings provide new insight for understanding the responses of D. vulgaris to FNA and will provide a foundation for optimal application of this antimicrobial agent for improved control of sewer corrosion and odor management.IMPORTANCE Hydrogen sulfide produced by SRB in sewers causes odor problems and results in serious deterioration of sewer assets that requires very costly and demanding rehabilitation. Currently, there is successful application of the antimicrobial agent free nitrous acid (FNA), the protonated form of nitrite, for the control of sulfide levels in sewers (G. Jiang et al., Water Res 47:4331-4339, 2013, http://dx.doi.org/10.1016/j.watres.2013.05.024). However, the details of the antimicrobial mechanisms of FNA are largely unknown. In this study, we identified the key responses (decreased anaerobic respiration, reducing FNA, combating oxidative stress, and shutting down protein synthesis) of Desulfovibrio vulgaris Hildenborough, a model sewer corrosion bacterium, to FNA exposure by examining the growth, physiological, and gene expression changes. These findings provide new insight and underpinning knowledge for understanding the responses of D. vulgaris to FNA exposure, thereby benefiting the practical application of FNA for improved control of sewer corrosion and odor.


Assuntos
Anti-Infecciosos/farmacologia , Desulfovibrio vulgaris/efeitos dos fármacos , Ácido Nitroso/farmacologia , Trifosfato de Adenosina/metabolismo , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/crescimento & desenvolvimento , Desulfovibrio vulgaris/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Perfilação da Expressão Gênica , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismo , Transcrição Gênica
10.
World J Microbiol Biotechnol ; 32(2): 23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26745983

RESUMO

Microbiologically influenced corrosion (MIC), also known as biocorrosion, is caused by corrosive biofilms. MIC is a growing problem, especially in the oil and gas industry. Among various corrosive microbes, sulfate reducing bacteria (SRB) are often the leading culprit. Biofilm mitigation is the key to MIC mitigation. Biocide applications against biofilms promote resistance over time. Thus, it is imperative to develop new biodegradable and cost-effective biocides for large-scale field applications. Using the corrosive Desulfovibrio vulgaris (an SRB) biofilm as a model biofilm, this work demonstrated that a cocktail of glyceryl trinitrate (GTN) and caprylic acid (CA) was very effective for biofilm prevention and mitigation of established biofilms on C1018 carbon steel coupons. The most probable number sessile cell count data and confocal laser scanning microscope biofilm images proved that the biocide cocktail of 25 ppm (w/w) GTN + 0.1% (w/w) CA successfully prevented the D. vulgaris biofilm establishment on C1018 carbon steel coupons while 100 ppm GTN + 0.1% CA effectively mitigated pre-established D. vulgaris biofilms on C1018 carbon steel coupons. In both cases, the cocktails were able to reduce the sessile cell count from 10(6) cells/cm(2) to an undetectable level.


Assuntos
Biofilmes/efeitos dos fármacos , Caprilatos/farmacologia , Carbono/química , Desulfovibrio vulgaris/efeitos dos fármacos , Desulfovibrio vulgaris/fisiologia , Nitroglicerina/farmacologia , Aço/química , Corrosão , Desulfovibrio vulgaris/metabolismo , Desinfetantes/farmacologia , Sinergismo Farmacológico , Microscopia Confocal , Oxirredução
11.
Bioelectrochemistry ; 101: 14-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25023048

RESUMO

In the microbiologically influenced corrosion (MIC) caused by sulfate reducing bacteria (SRB), iron oxidation happens outside sessile cells while the utilization of the electrons released by the oxidation process for sulfate reduction occurs in the SRB cytoplasm. Thus, cross-cell wall electron transfer is needed. It can only be achieved by electrogenic biofilms. This work hypothesized that the electron transfer is a bottleneck in MIC by SRB. To prove this, MIC tests were carried out using 304 stainless steel coupons covered with the Desulfovibrio vulgaris (ATCC 7757) biofilm in the ATCC 1249 medium. It was found that both riboflavin and flavin adenine dinucleotide (FAD), two common electron mediators that enhance electron transfer, accelerated pitting corrosion and weight loss on the coupons when 10ppm (w/w) of either of them was added to the culture medium in 7-day anaerobic lab tests. This finding has important implications in MIC forensics and biofilm synergy in MIC that causes billions of dollars of damages to the US industry each year.


Assuntos
Corrosão , Desulfovibrio vulgaris/fisiologia , Aço Inoxidável , Sulfatos/metabolismo , Biofilmes/efeitos dos fármacos , Desulfovibrio vulgaris/efeitos dos fármacos , Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/farmacologia , Microscopia Eletrônica de Varredura , Oxirredução , Plâncton/microbiologia , Riboflavina/metabolismo , Riboflavina/farmacologia , Aço Inoxidável/química
12.
Environ Sci Technol ; 49(2): 924-31, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25534748

RESUMO

Sulfate-reducing microbes, such as Desulfovibrio vulgaris Hildenborough, cause "souring" of petroleum reservoirs through produced sulfide and precipitate heavy metals, either as sulfides or by alteration of the metal reduction state. Thus, inhibitors of these microbes, including nitrate and nitrite ions, are studied in order to limit their impact. Nitrite is a potent inhibitor of sulfate reducers, and it has been suggested that nitrate does not inhibit these microbes directly but by reduction to nitrite, which serves as the ultimate inhibitor. Here we provide evidence that nitrate inhibition of D. vulgaris can be independent of nitrite production. We also show that D. vulgaris can use nitrite as a nitrogen source or terminal electron acceptor for growth. Moreover, we report that use of nitrite as a terminal electron acceptor requires nitrite reductase (nrfA) as a D. vulgaris nrfA mutant cannot respire nitrite but remains capable of utilizing nitrite as a nitrogen source. These results illuminate previously uncharacterized metabolic abilities of D. vulgaris that may allow niche expansion in low-sulfate environments. Understanding these abilities may lead to better control of sulfate-reducing bacteria in industrial settings and more accurate prediction of their interactions in the environment.


Assuntos
Desulfovibrio vulgaris/efeitos dos fármacos , Nitratos/análise , Nitritos/análise , Catálise , Elétrons , Monitoramento Ambiental/métodos , Lactatos/química , Nitrito Redutases/metabolismo , Nitrogênio/química , Óxidos de Nitrogênio/metabolismo , Oxirredução , Oxigênio/química , Petróleo , Sulfatos/metabolismo , Sulfetos/metabolismo
13.
J Bacteriol ; 195(11): 2684-90, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23564166

RESUMO

Desulfovibrio species are Gram-negative anaerobic sulfate-reducing bacteria that colonize the human gut. Recently, Desulfovibrio spp. have been implicated in gastrointestinal diseases and shown to stimulate the epithelial immune response, leading to increased production of inflammatory cytokines by macrophages. Activated macrophages are key cells of the immune system that impose nitrosative stress during phagocytosis. Hence, we have analyzed the in vitro and in vivo responses of Desulfovibrio vulgaris Hildenborough to nitric oxide (NO) and the role of the hybrid cluster proteins (HCP1 and HCP2) and rubredoxin oxygen oxidoreductases (ROO1 and ROO2) in NO protection. Among the four genes, hcp2 was the gene most highly induced by NO, and the hcp2 transposon mutant exhibited the lowest viability under conditions of NO stress. Studies in murine macrophages revealed that D. vulgaris survives incubation with these phagocytes and triggers NO production at levels similar to those stimulated by the cytokine gamma interferon (IFN-γ). Furthermore, D. vulgaris hcp and roo mutants exhibited reduced viability when incubated with macrophages, revealing that these gene products contribute to the survival of D. vulgaris during macrophage infection.


Assuntos
Proteínas de Bactérias/metabolismo , Desulfovibrio vulgaris/fisiologia , Infecções por Desulfovibrionaceae/microbiologia , Proteínas Ferro-Enxofre/metabolismo , Macrófagos/microbiologia , NADH NADPH Oxirredutases/genética , Óxido Nítrico/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Desulfovibrio vulgaris/efeitos dos fármacos , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/crescimento & desenvolvimento , Infecções por Desulfovibrionaceae/imunologia , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas Ferro-Enxofre/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Mutagênese Insercional , NADH NADPH Oxirredutases/metabolismo , Óxido Nítrico/farmacologia , Nitritos/análise , Nitritos/metabolismo , Estresse Oxidativo , Fenótipo , Estresse Fisiológico
14.
World J Microbiol Biotechnol ; 28(4): 1641-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22805946

RESUMO

Biofilms of sulfate reducing bacteria (SRB) are often responsible for Microbiologically Influenced Corrosion (MIC) that is a major problem in the oil and gas industry as well as water utilities and other industries. This work was inspired by recent reports that some D: -amino acids may be useful in the control of microbial biofilms. A D: -amino acid mixture with equimolar D: -tyrosine, D: -methionine, D: -tryptophan and D: -leucine was tested in this work for their enhancement of a biocide cocktail containing tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and ethylenediamine-N,N'-disuccinic acid (EDDS). Desulfovibrio vulgaris (ATCC 7757) was cultured in ATCC 1249 medium. Its biofilm was grown on C1018 carbon steel coupons. Experimental results indicated that the triple biocide cocktail consisting of 30 ppm THPS, 500 ppm EDDS and 6.6 ppm D: -amino acid mixture (with equimolar D: -tyrosine, D: -methionine, D: -tryptophan and D: -leucine) was far more effective than THPS and EDDS alone and their binary combination. The triple biocide cocktail effectively prevented SRB biofilm establishment and removed the established SRB biofilm. The D: -amino acid mixture alone did not show significant effects in the two tasks even at 660 ppm.


Assuntos
Aminoácidos/farmacologia , Fenômenos Fisiológicos Bacterianos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Desulfovibrio vulgaris/efeitos dos fármacos , Desinfetantes/farmacologia , Meios de Cultura/química , Sinergismo Farmacológico , Etilenodiaminas/farmacologia , Testes de Sensibilidade Microbiana , Succinatos/farmacologia
15.
World J Microbiol Biotechnol ; 28(10): 3067-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22806745

RESUMO

Microbiologically influenced corrosion (MIC) is a major problem in various industries such as oil and gas, and water utilities. Billions of dollars are lost to microbiologically influenced corrosion (MIC) each year in the US. The key to MIC control is biofilm mitigation. Sulfate-reducing bacteria (SRB) are often the culprits. They are also involved in souring and biofouling. SRB biofilms are notoriously difficult to eradicate. Due to environmental concerns and increasing costs, better biocide treatment strategies are desired. Recent studies suggested that D-tyrosine and some other D-amino acids may signal biofilm dispersal. Experimental results in this work indicated that D-tyrosine is an effective biocide enhancer for tetrakis hydroxymethyl phosphonium sulfate (THPS) that is a green biocide. Desulfovibrio vulgaris (ATCC 7757) was used in biofilm prevention and biofilm removal tests. It was found that 100 ppm D-tyrosine alone and 50 ppm THPS alone were both ineffective against the SRB biofilm. However, when 1 ppm D-tyrosine was combined with 50 ppm THPS, the synergy between the two chemicals successfully prevented the establishment of the SRB biofilm on C1018 mild steel coupon surfaces in batch treatment tests. It also eradicated established SRB biofilms from coupon surfaces in both 1 and 3-h shock treatment tests.


Assuntos
Biofilmes/efeitos dos fármacos , Desulfovibrio vulgaris/efeitos dos fármacos , Desulfovibrio vulgaris/fisiologia , Desinfetantes/farmacologia , Compostos Organofosforados/farmacologia , Tirosina/farmacologia , Corrosão , Sinergismo Farmacológico , Microscopia Eletrônica de Varredura/métodos , Aço/química
16.
Environ Pollut ; 169: 27-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22683477

RESUMO

We investigated the effect of increasing CO(2) concentrations on the growth and viability of ecophysiologically different microorganisms to obtain information for a leakage scenario of CO(2) into shallow aquifers related to the capture and storage of CO(2) in deep geological sections. CO(2) concentrations in the gas phase varied between atmospheric conditions and 80% CO(2) for the aerobic strains Pseudomonas putida F1 and Bacillus subtilis 168 and up to 100% CO(2) for the anaerobic strains Thauera aromatica K172 and Desulfovibrio vulgaris Hildenborough. Increased CO(2) concentrations caused prolonged lag-phases, and reduced growth rates and cell yields; the extent of this effect was proportional to the CO(2) concentration. Additional experiments with increasing CO(2) concentrations and increasing pressure (1-5000 kPa) simulated situations occurring in deep CO(2) storage sites. Living cell numbers decreased significantly within 24 h at pressures ≥1000 kPa, demonstrating a severe lethal effect for the combination of high pressure and CO(2).


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Dióxido de Carbono/análise , Desulfovibrio vulgaris/crescimento & desenvolvimento , Pseudomonas putida/crescimento & desenvolvimento , Thauera/crescimento & desenvolvimento , Bacillus subtilis/química , Bacillus subtilis/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Desulfovibrio vulgaris/química , Desulfovibrio vulgaris/efeitos dos fármacos , Cinética , Pressão , Pseudomonas putida/química , Pseudomonas putida/efeitos dos fármacos , Thauera/química , Thauera/efeitos dos fármacos
17.
BMC Genomics ; 13: 138, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22507456

RESUMO

BACKGROUND: Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. RESULTS: The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells. CONCLUSIONS: Even though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion.


Assuntos
Biofilmes/crescimento & desenvolvimento , Carbono/metabolismo , Desulfovibrio vulgaris/crescimento & desenvolvimento , Desulfovibrio vulgaris/genética , Metabolismo Energético/genética , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Análise por Conglomerados , Desulfovibrio vulgaris/efeitos dos fármacos , Desulfovibrio vulgaris/fisiologia , Metabolismo Energético/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácido Láctico/farmacologia , Microscopia Confocal , Modelos Biológicos , Plâncton/citologia , Plâncton/efeitos dos fármacos , Plâncton/microbiologia , Análise de Componente Principal , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sulfatos/farmacologia
18.
Antonie Van Leeuwenhoek ; 101(2): 303-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21894573

RESUMO

Inactivation of PerR by oxidative stress and a corresponding increase in expression of the perR regulon genes is part of the oxidative stress defense in a variety of anaerobic bacteria. Diluted anaerobic, nearly sulfide-free cultures of mutant and wild-type Desulfovibrio vulgaris (10(5)-10(6) colony-forming units/ml) were treated with 0 to 2,500 µM H(2)O(2) for only 5 min to prevent readjustment of gene expression. Survivors were then scored by plating. The wild type and perR mutant had 50% survival at 58 and 269 µM H(2)O(2), respectively, indicating the latter to be 4.6-fold more resistant to killing by H(2)O(2) under these conditions. Significantly increased resistance of the wild type (38-fold; 50% killing at 2188 µM H(2)O(2)) was observed if cells were pretreated with full air for 30 min, conditions that did not affect cell viability. The resistance of the perR mutant increased less (4.6-fold; 50% killing at 1230 µM H(2)O(2)), when similarly pretreated. Interestingly, no increased resistance of either was achieved by exposure with 10.6 µM H(2)O(2) for 30 min, the highest concentration that could be used without killing the cells. Hence, in environments with low D. vulgaris biomass only the presence of external O(2) effectively activates the perR regulon. As a result, mutant strains lacking one of the perR regulon genes ahpC, dvu0772, rbr1 or rbr2 displayed decreased resistance to H(2)O(2) stress only following pretreatment with air.


Assuntos
Desulfovibrio vulgaris/metabolismo , Peróxido de Hidrogênio/toxicidade , Oxigênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desulfovibrio vulgaris/efeitos dos fármacos , Desulfovibrio vulgaris/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulon/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
19.
J Environ Sci (China) ; 23(8): 1394-402, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22128548

RESUMO

We compared the efficacy of a natural biocide with four chemical tetrakishydroxymethyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, and formaldehyde, glutaraldehyde, to control microbial induced corrosion in oil pipelines. The efficacy of biocides were monitored against Desulfovibrio vulgaris and Desulfovibrio gigas in experimental pipes by measuring cell counts, H2S production, Fe(II) production, production of extracellular polymeric substances and structure of biofilm. The treatment with cow urine had minimum planktonic cell counts of 3 x 10(2) CFU/mL as well as biofilm cell counts of 9 x 10(1) CFU/mL as compared with tetrakishydroxyl methyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, formaldehyde and glutaraldehyde. Sulfide production was the lowest with cow urine (0.08 mmol/L), followed by tetrakishydroxymethyl phosphonium sulfonate 0.72 mmol/L. On day 90 of treatment, Fe(II) production was also found to be the lowest with cow urine. The scanning electron microscopic studies indicated that the biofilm bacteria were killed by cow urine. These results demonstrate the cow urine mediated control of microbially induced corrosion, and this is indicative of its potential as a viable substitute of toxic biocides. To the best of our knowledge, this seems to be the first report which screens possible biocidal activity by cow urine as compared to the most common biocides which oil industry is currently using.


Assuntos
Corrosão , Desulfovibrio gigas/efeitos dos fármacos , Desulfovibrio vulgaris/efeitos dos fármacos , Desinfetantes/farmacologia , Biofilmes/efeitos dos fármacos
20.
FEMS Microbiol Lett ; 310(2): 175-81, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20695895

RESUMO

We studied the effect of hydrogen peroxide (H(2)O(2)) stress on the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. In a lactate/sulfate medium, growth was affected from 0.1 mM H(2)O(2) and totally inhibited at 0.7 mM. Surprisingly, transcript analyses revealed that the PerR regulon exhibited opposite regulation in the presence of 0.1 and 0.3 mM H(2)O(2). The variations in peroxidase- and superoxide dismutase-specific activities in the cell-free extracts of H(2)O(2)-stressed cultures were related to changes in the corresponding transcript abundance. Our data suggest that sod, sor, ngr and tpx genes, in addition to the PerR regulon, belong to the H(2)O(2) stimulon.


Assuntos
Desulfovibrio vulgaris/efeitos dos fármacos , Desulfovibrio vulgaris/enzimologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Proteínas de Bactérias/metabolismo , Desulfovibrio vulgaris/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Peroxidase/metabolismo , Proteínas Repressoras/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA